128 research outputs found

    Design and User Satisfaction of Interactive Maps for Visually Impaired People

    Get PDF
    Multimodal interactive maps are a solution for presenting spatial information to visually impaired people. In this paper, we present an interactive multimodal map prototype that is based on a tactile paper map, a multi-touch screen and audio output. We first describe the different steps for designing an interactive map: drawing and printing the tactile paper map, choice of multi-touch technology, interaction technologies and the software architecture. Then we describe the method used to assess user satisfaction. We provide data showing that an interactive map - although based on a unique, elementary, double tap interaction - has been met with a high level of user satisfaction. Interestingly, satisfaction is independent of a user's age, previous visual experience or Braille experience. This prototype will be used as a platform to design advanced interactions for spatial learning

    Analysis of the Y(4140) and related molecular states with QCD sum rules

    Full text link
    In this article, we assume that there exist scalar DDˉ{D}^\ast {\bar {D}}^\ast, DsDˉs{D}_s^\ast {\bar {D}}_s^\ast, BBˉ{B}^\ast {\bar {B}}^\ast and BsBˉs{B}_s^\ast {\bar {B}}_s^\ast molecular states, and study their masses using the QCD sum rules. The numerical results indicate that the masses are about (250500)MeV(250-500) \rm{MeV} above the corresponding DDˉ{D}^\ast -{\bar {D}}^\ast, DsDˉs{D}_s^\ast -{\bar {D}}_s^\ast, BBˉ{B}^\ast -{\bar {B}}^\ast and BsBˉs{B}_s^\ast -{\bar {B}}_s^\ast thresholds, the Y(4140) is unlikely a scalar DsDˉs{D}_s^\ast {\bar {D}}_s^\ast molecular state. The scalar DDˉD^\ast {\bar D}^\ast, DsDˉsD_s^\ast {\bar D}_s^\ast, BBˉB^\ast {\bar B}^\ast and BsBˉsB_s^\ast {\bar B}_s^\ast molecular states maybe not exist, while the scalar DDˉ{D'}^\ast {\bar {D'}}^\ast, DsDˉs{D'}_s^\ast {\bar {D'}}_s^\ast, BBˉ{B'}^\ast {\bar {B'}}^\ast and BsBˉs{B'}_s^\ast {\bar {B'}}_s^\ast molecular states maybe exist.Comment: 19 pages, 36 figures, slight revisio

    Wavefunction topology of two-dimensional time-reversal symmetric superconductors

    Full text link
    We discuss the topology of the wavefunctions of two-dimensional time-reversal symmetric superconductors. We consider (a) the planar state, (b) a system with broken up-down reflection symmetry, and (c) a system with general spin-orbit interaction. We show explicitly how the relative sign of the order parameter on the two Fermi surfaces affects this topology, and clarify the meaning of the Z2Z_2 classification for these topological states.Comment: only the Introduction has been modified from v

    Photospheric Magnetic Field: Relationship Between North-South Asymmetry and Flux Imbalance

    Full text link
    Photospheric magnetic fields were studied using the Kitt Peak synoptic maps for 1976-2003. Only strong magnetic fields (B>100 G) of the equatorial region were taken into account. The north-south asymmetry of the magnetic fluxes was considered as well as the imbalance between positive and negative fluxes. The north-south asymmetry displays a regular alternation of the dominant hemisphere during the solar cycle: the northern hemisphere dominated in the ascending phase, the southern one in the descending phase during Solar Cycles 21-23. The sign of the imbalance did not change during the 11 years from one polar-field reversal to the next and always coincided with the sign of the Sun's polar magnetic field in the northern hemisphere. The dominant sign of leading sunspots in one of the hemispheres determines the sign of the magnetic-flux imbalance. The sign of the north-south asymmetry of the magnetic fluxes and the sign of the imbalance of the positive and the negative fluxes are related to the quarter of the 22-year magnetic cycle where the magnetic configuration of the Sun remains constant (from the minimum where the sunspot sign changes according to Hale's law to the magnetic-field reversal and from the reversal to the minimum). The sign of the north-south asymmetry for the time interval considered was determined by the phase of the 11-year cycle (before or after the reversal); the sign of the imbalance of the positive and the negative fluxes depends on both the phase of the 11-year cycle and on the parity of the solar cycle. The results obtained demonstrate the connection of the magnetic fields in active regions with the Sun's polar magnetic field in the northern hemisphere.Comment: 24 pages, 12 figures, 2 table

    Gluino Production in Electron-Positron Annihilation

    Get PDF
    We discuss the pair production of gluinos in electron-positron annihilation at LEP, in a model with soft supersymmetry breaking, allowing for mixing between the squarks. In much of the parameter space of the Minimal Supersymmetric Model (MSSM) the cross section corresponds to a ZZ branching ratio above 10510^{-5}, even up to 10410^{-4}. A non-observation of gluinos at this level restricts the allowed MSSM parameter space. In particular, it leads to lower bounds on the soft mass parameters in the squark sector.Comment: 24 pages LATEX plus 10 pages of figures (not included, available on request). Full postscript version available by anonymous ftp at node VSFYS1.FI.UIB.NO in subdirectory OSLAND, file BERGEN94-10.PS), Bergen Scientific/Technical Report No. 1994-1

    Variable-range hopping in quasi-one-dimensional electron crystals

    Full text link
    We study the effect of impurities on the ground state and the low-temperature dc transport in a 1D chain and quasi-1D systems of many parallel chains. We assume that strong interactions impose a short-range periodicicity of the electron positions. The long-range order of such an electron crystal (or equivalently, a 4kF4 k_F charge-density wave) is destroyed by impurities. The 3D array of chains behaves differently at large and at small impurity concentrations NN. At large NN, impurities divide the chains into metallic rods. The low-temperature conductivity is due to the variable-range hopping of electrons between the rods. It obeys the Efros-Shklovskii (ES) law and increases exponentially as NN decreases. When NN is small, the metallic-rod picture of the ground state survives only in the form of rare clusters of atypically short rods. They are the source of low-energy charge excitations. In the bulk the charge excitations are gapped and the electron crystal is pinned collectively. A strongly anisotropic screening of the Coulomb potential produces an unconventional linear in energy Coulomb gap and a new law of the variable-range hopping lnσ(T1/T)2/5-\ln\sigma \sim (T_1 / T)^{2/5}. T1T_1 remains constant over a finite range of impurity concentrations. At smaller NN the 2/5-law is replaced by the Mott law, where the conductivity gets suppressed as NN goes down. Thus, the overall dependence of σ\sigma on NN is nonmonotonic. In 1D, the granular-rod picture and the ES apply at all NN. The conductivity decreases exponentially with NN. Our theory provides a qualitative explanation for the transport in organic charge-density wave compounds.Comment: 20 pages, 7 figures. (v1) The abstract is abridged to 24 lines. For the full abstract, see the manuscript (v2) several changes in presentation per referee's comments. No change in result

    The anomalous Higgs-top couplings in the MSSM

    Full text link
    The anomalous couplings of the top quark and the Higgs boson has been studied in an effective theory resulting in the framework of the minimal supersymmetric extension of the standard model (MSSM) when the heavy fields are integrated out. Constraints on the parameters of the model from the experimental data on the ratio Rb=Γ(Zbbˉ)/Γ(Zhadrons)R_b={\Gamma(Z\to b\bar{b})/\Gamma(Z\to hadrons)} are derived.Comment: Latex, 26 pages + 13 ps figures, final version in PR
    corecore